[Project] The motion of a rotary motor is described by the overdamped Langeving equation

$$
\frac{d \theta}{d t}=-\frac{d V(\theta)}{d \theta}+f_{0}+\eta(t)
$$

where $0 \leq \theta<2 \pi$ is the angular position of the motor, $V(\theta)=\cos \theta$ is the periodic potential, and f_{0} is the constant applied torque.
(1) Write down the corresponding Fokker-Planck equation for the probability distribution function $P(\theta, t)$ and solve it to find the stationary state distribution $P_{S S}(\theta)$. Compare it with the equilibrium Boltzmann distribution.
(2) Find the average angular velocity $\Omega=\lim _{t \rightarrow \infty} \frac{1}{t}\langle(\theta(t)-\theta(0))\rangle$ as a function of the applied torque f_{0}.
(3) Prepare your system in the equilibrium state with f_{0} and then turn on the torque at time $t=0$. Solve the Langevin equation numerically upto time $t=\tau$ and measure the work done by the external torque

$$
W(\tau)=\int_{0}^{\tau} f_{0} \dot{\theta}\left(t^{\prime}\right) d t^{\prime}
$$

By performing the numerical simulations many times, you can construct the probability distribution function for the work $P(W)$. Test the integral and detailed fluctuation theorems by computing $\left\langle e^{-W}\right\rangle$ and $P(W) / P(-W)$.

